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Coordinate Geometry

... I have resolved to quit only abstract geometry, that is to
say, the consideration of questions which serve only to exercise
the mind, and this, in order to study another kind of geometry,
which has for its object the explanation of the phenomena of
nature. RENE DESCARTES

1. The Motivation for Coordinate Geometry

Fermat and Descartes, the two men primarily responsible for the next major
creation in mathematics, were, like Desargues and his followers, concerned
with general methods for studying curves. But Fermat and Descartes were
very much involved in scientific work, keenly aware of the need for quantita-
tive methods, and impressed with the power of algebra to supply that method.
And so Fermat and Descartes turned to the application of algebra to the
study of geometry. The subject they created is called coordinate, or analytic,
geometry; its central idea is the association of algebraic equations with curves
and surfaces. This creation ranks as one of the richest and most fruitful veins
of thought ever struck in mathematics.

That the needs of science and an interest in methodology motivated
both Fermat and Descartes is beyond doubt. Fermat’s contributions to the
. calculus such as the construction of tangents to curves and the calculation of
maxima and minima, were, as we shall see more clearly in connection with
the history of the calculus, designed to answer scientific problems; he was
also a first-rate contributor to optics. His interest in methodology is attested
to by an explicit statement in his brief book, Ad Locos Planos et Solidos Isagoge
(Introduction to Plane and Solid Loci?), written in 1629 but published by
1637.2 He says there that he sought a universal approach to problems in-
volving curves. As for Descartes, he was one of the greatest seventeenth-
century scientists, and he made methodology a prime objective in all of his
work,

1. Fermat uses these terms in the sense explained by Pappus. See Chap. 8, sec. 2.
2. Buvres, 1, 91-103.
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Figure 15.1

2. The Coordinate Geometry of Fermat

In his work on the theory of numbers, Fermat started with Diophantus. His
work on curves began with his study of the Greek geometers, notably Apol-
lonius, whose lost book, On Plane Loci, he, among others, had reconstructed.
Having contributed to algebra, he was prepared to apply it to the study of
curves, which he did in Ad Locos. He says that he proposed to open up a
general study of loci, which the Greeks had failed to do. Just how Fermat’s
ideas on coordinate geometry evolved is not known. He was familiar with
Vieta’s use of algebra to solve geometric problems, but it is more likely that
he translated Apollonius’ results directly into algebraic form.

He considers any curve and a typical point J on it (Fig. 15.1). The position
of J is fixed by a length 4, measured from a point O on a base line to a point
Z, and the length E from Z to J. Thus Fermat uses what we call oblique
coordinates, though no y-axis appears explicitly and no negative coordinates
are used. His 4 and E are our x and y.

Fermat had stated earlier his general principle: ‘“Whenever in a final
equation two unknown quantities are found we have a locus, the extremity
of one of these describing a line straight or curved.” Thus the extremities
J,J',J", ... of E in its various positions describe the “line.” His unknown
quantities, 4 and E, are really variables or, one can say, the equation in 4
and E is indeterminate. Here Fermat makes use of Vieta’s idea of having a
letter stand for a class of numbers. Fermat then gives various algebraic
equations in 4 and E and states what curves they describe. Thus he writes
“D in A aequetur B in E” (in our notation, Dx = By) and states that this
represents a straight line. He also gives (in our notation) the more general
equation d(a — x) = by and affirms that this too represents a straight line.
The equation “B quad. — A quad. aequetur E quad.” (in our notation,
B? — x? = y?) represents a circle. Similarly (in our notation), a® — x? = ky?
represents an ellipse; a? + 2% = ky* and xy = a represent hyperbolas;
and x® = ay represents a parabola. Since Fermat did not use negative
coordinates, his equations could not represent the full curve that he said they
described. He did appreciate that one can translate and rotate axes, because
he gives more complicated second-degree equations and states the simpler
forms to which they can be reduced. In fact, he affirms that an equation of
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the first degree in 4 and E has a straight-line locus and all second degree
equations in 4 and E have conics as their loci. In his Methodus ad Disquirendam
Maximam et Minimam (Method of Finding Maxima and Minima, 1637),% he
introduced the curves of y = x" andy = 2~ ™.

3. René Descartes

Descartes was the first great modern philosopher, a founder of modern
biology, a first-rate physicist, and only incidentally a mathematician.
However, when a man of his power of intellect devotes even part of his time
to a subject, his work cannot but be significant.

He was born in La Haye in Touraine on March 31, 1596. His father,
a moderately wealthy lawyer, sent him at the age of eight to the Jesuit
school of La Fléche in Anjou. Because he was of delicate health, he was
allowed to spend the mornings in bed, during which time he worked. He
followed this custom throughout his life. At sixteen he left La Fleche and at
twenty he was graduated from the University of Poitiers as a lawyer and went
to Paris. There he met Mydorge and Father Marin Mersenne and spent a
year with them in the study of mathematics. However, Descartes became
restless and entered the army of Prince Maurice of Orange in 1617. During
the next nine years he alternated between service in several armies and
carousing in Paris, but throughout this period continued to study mathe-
matics. His ability to solve a problem that had been posted on a billboard in
Breda in the Netherlands as a challenge convinced him that he had
mathematical ability and he began to think seriously in this subject. He
returned to Paris and, having become excited by the power of the telescope,
secluded himself to study the theory and construction of optical instruments.
In 1628 he moved to Holland to secure a quieter and freer intellectual
atmosphere. There he lived for twenty years and wrote his famous works.
In 1649 he was invited to instruct Queen Christina of Sweden. Tempted by
the honor and the glamor of royalty, he accepted. He died there of
pneumonia in 1650.

His first work, Regulae ad Directionem Ingenii (Rules for the Direction of
the Mind),* was written in 1628 but published posthumously. His next
major work was Le Monde (System of the World, 1634), which contains a
cosmological theory of vortices to explain how the planets are kept in motion
and in their paths around the sun. However, he did not publish it for fear of
persecution by the Church. In 1637 he published his Discours de la méthode
pour bien conduire sa raison, et chercher la vérité dans les sciences.® This book, a

3. @Euvres, 1, 133-79; 3, 121-56.
4. Published in Dutch in 1692; Euvres, 10, 359-469.
5. GEuwres, 6, 1-78.
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classic of literature and philosophy, contains three famous appendices, La
Géométrie, La Dioptrique, and Les Méiéores. La Géométrie, which is the only
book Descartes wrote on mathematics, contains his ideas on coordinate
geometry and algebra, though he did communicate many other ideas on
mathematics in numerous letters. The Discours brought him great fame im-
mediately. As time passed, both he and his public became more impressed
with his work. In 1644 he published Principia Philosophiae, which is devoted to
physical science and especially to the laws of motion and the theory of
vortices. It contains material from his System, which he believed he had now
made more acceptable to the Church. In 1650 he published Musicae
Compendium.

Descartes’s scientific ideas came to dominate the seventeenth century.
His teachings and writings became popular even among non-scientists
because he presented them so clearly and attractively. Only the Church
rejected him. Actually Descartes was devout, and happy to have (as he
believed) established the existence of God. But he had taught that the Bible
was not the source of scientific knowledge, that reason alone sufficed to
establish the existence of God, and that man should accept only what he
could understand. The Church reacted to these teachings by putting his
books on the Index of Prohibited Books shortly after his death and by preventing
a funeral oration on the occasion of his interment in Paris.

Descartes approached mathematics through three avenues, as a philos-
opher, as a student of nature, and as a man concerned with the uses of
science. It is difficult and perhaps artificial to try to separate these three
lines of thought. He lived when the Protestant-Catholic controversy was at
its height and when science was beginning to reveal laws of nature that
challenged major religious doctrines. Hence Descartes began to doubt all the
knowledge he had acquired at school. As early as the conclusion of his course
of study at La Fléche, he decided that his education had advanced only his
perplexity. He found himself so beset with doubts that he was convinced he
had progressed no further than to recognize his ignorance. And yet, because
he had been in one of the most celebrated schools in Europe, and because he
believed he had not been an inferior student, he felt justified in doubting
whether there was any sure body of knowledge anywhere. He then pondered
the question: How do we know anything?

He soon decided that logic in itself was barren: “As for Logic, its syl-
logisms and the majority of its other precepts are of avail rather in the
communication of what we already know, or . ..even in speaking without
judgment of things of which we are ignorant, than in the investigation of the
unknown.” Logic, then, did not supply the fundamental truths.

But where were these to be found ? He rejected the current philosophy,
largely Scholastic, which, though appealing, seemed to have no clear-cut
foundations and employed reasoning that was not always irreproachable.
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Philosophy, he decided, afforded merely “the means of discoursing with an
appearance of truth on all matters.” Theology pointed out the path to
heaven and he aspired to go there as much as any man, but was the path
correct ?

The method of establishing truths in all fields came to him, he says, in a
dream, on November 10, 1619, when he was on one of his military cam-
paigns; it was the method of mathematics. Mathematics appealed to him
because the proofs based on its axioms were unimpeachable and because
authority counted for naught. Mathematics provided the method of achieving
certainties and effectively demonstrating them. Moreover, he saw clearly
that the method of mathematics transcended its subject matter. He says, “It
is a more powerful instrument of knowledge than any other that has been
bequeathed to us by human agency, as being the source of all others.”” In the
same vein he continues:

... All the sciences which have for their end investigations concerning
order and measure are related to mathematics, it being of small im-
portance whether this measure be sought in numbers, forms, stars,
sounds, or any other object; that accordingly, there ought to exist a
general science which should explain all that can be known about order
and measure, considered independently of any application to a particular
subject, and that, indeed, this science has its own proper name, COn-
secrated by long usage, to wit, mathematics. And a proof that it far
surpasses in facility and importance the sciences which depend upon it is
that it embraces at once all the objects to which these are devoted and a
great many others besides. . . .

And so he concluded that “The long chains of simple and easy reasonings
by means of which geometers are accustomed to reach the conclusions of their
most difficult demonstrations had led me to imagine that all things to the
knowledge of which man is competent are mutually connected in the same
way.”

From his study of mathematical method he isolated in his Rules for the
Direction of the Mind the following principles for securing exact knowledge in
any field. He would accept nothing as true that was not so clear and distinct
in his own mind as to exclude all doubt; he would divide difficulties into
smaller ones; he would proceed from the simple to the complex; and,
lastly, he would enumerate and review the steps of his reasoning so
thoroughly that nothing could be omitted.

With these essentials of method, which he distilled from the practice of
mathematicians, Descartes hoped to solve problems in philosophy, physics,
anatomy, astronomy, mathematics, and other fields. Although he did not
succeed in this ambitious program, he did make remarkable contributions
to philosophy, science, and mathematics. The mind’s immediate appre-
hension of basic, clear, and distinct truths, this intuitive power, and the
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deduction of consequences are the essence of his philosophy of knowledge.
Purported knowledge otherwise obtained should be rejected as suspect of
error and dangerous. The three appendices to his Discours were intended to
show that his method is effective; he believed that he had shown this.

Descartes inaugurated modern philosophy. We cannot pursue his
system except to note a few points relevant to mathematics. In philosophy he
sought as axioms truths so clear to him that he could accept them readily.
He finally decided on four: (a) cogito, ergo sum (I think, therefore I am);
(b) each phenomenon must have a cause; (c) an effect cannot be greater
than its cause; (d) the mind has innate in it the ideas of perfection, space,
time, and motion. The idea of perfection, of a perfect being, could not be
derived from or created by the imperfect mind of man in view of axiom (c).
It could be obtained only from a perfect being. Hence God exists. Since God
would not deceive us, we can be sure that the axioms of mathematics, which
are clear to our intuitions, and the deductions we make from them by
purely mental processes, really apply to the physical world and so are
truths. It follows, then, that God must have established nature according to
mathematical laws.

As for mathematics itself, he believed that he had distinct and clear
mathematical ideas, such as that of a triangle. These ideas did exist and
were eternal and immutable. They did not depend on his thinking them or
not. Thus mathematics had an external, objective existence.

Descartes’s second major interest, shared by most thinkers of his age,
was the understanding of nature. He devoted many years to scientific
problems and even experimented extensively in mechanics, hydrostatics,
optics, and biology. His theory of vortices was the dominant cosmological
theory of the seventeenth century. He is the founder of the philosophy of
mechanism—that all natural phenomena, including the functioning of the
human body, reduce to motions obeying the laws of mechanics—though
Descartes exempted the soul. Optics, and the design of lenses in particular,
was of special interest to him; part of La Géométrie is devoted to optics, as is
La Dioptrique. Descartes shares with Willebrord Snell the honor of discovering
the correct law of refraction of light. As in philosophy, his work in science was
basic and revolutionary.

Also important in Descartes’s scientific work is his emphasis on putting
the fruits of science to use (Chap. 11, sec. 5). In this attitude he breaks
clearly and openly with the Greeks. To master nature for the good of man, he
pursued many scientific problems. And, being impressed with the power of
mathematics, he naturally sought to use that subject; for him it was not
contemplative discipline but a constructive and useful science. Unlike Fermat,
he cared little for its beauty and harmony; he did not value pure mathe-
matics. He says that mathematical method applied only to mathematics is
without value because it is not a study of nature. Those who cultivate
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mathematics for its own sake are idle searchers given to a vain play of the
spirit.

4. Descartes’s Work in Coordinate Geometry

Having decided that method was important and that mathematics could be
effectively employed in scientific work, Descartes turned to the application
of method to geometry. Here his general interest in method and his par-
ticular knowledge of algebra joined forces. He was disturbed by the fact that
every proof in Euclidean geometry called for some new, often ingenious,
approach. He explicitly criticized the geometry of the ancients as being too
abstract, and so much tied to figures *“that it can exercise the understanding
only on condition of greatly fatiguing the imagination.” The algebra that he
found prevalent he also criticized because it was so completely subject to
rules and formulas *“that there results an art full of confusion and obscurity
calculated to hamper instead of a science fitted to improve the mind.”
Descartes proposed, therefore, to take all that was best in geometry and
algebra and correct the defects of one with the help of the other.

Actually it was the use of algebra in geometry that he undertook to

" exploit. He saw fully the power of algebra and its superiority over the Greek

geometrical methods in providing a broad methodology. He also stressed the
generality of algebra and its value in mechanizing the reasoning processes and
minimizing the work in solving problems. He saw its potential as a universal
science of method. The product of his application of algebra to geometry was
La Géométrie.

Though in this book Descartes used the improvements in algebraic
notation already noted in Chapter 13, the essay is not easy reading. Much of
the obscurity was deliberate; Descartes boasted that few mathematicians in
Europe would understand his work. He indicated the constructions and
demonstrations, leaving it to others to fill in the details. In one of his letters
he compares his writing to that of an architect who lays the plans and pre-
scribes what should be done but leaves the manual work to the carpenters
and bricklayers. He says also, ¢“I have omitted nothing inadvertently but I
have foreseen that certain persons who boast that they know everything
would not miss the opportunity of saying that I have written nothing that
they did not already know, were I to make myself sufficiently intelligible for
them to understand me.” He gave other reasons in La Géométrie, such as not
wishing to deprive his readers of the pleasure of working things out for them-
selves. Many explanatory commentaries were written to make Descartes’s
book clear.

His ideas must be inferred from a number of examples worked out in
the book. He says that he omits the demonstration of most of his general
statements because if one takes the trouble to examine systematically these
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examples, the demonstrations of the general results will become apparent,
and it is of more value to learn them in that way.

He begins in La Géométrie with the use of algebra to solve geometrical
construction problems in the manner of Vieta; only gradually does the idea
of the equation of a curve emerge. He points out first that geometrical con-
structions call for adding, subtracting, multiplying, and dividing lines and
taking the square root of particular lines. Since all of these operations also
exist in algebra, they can be expressed in algebraic terms.

In tackling a given problem, Descartes says we must suppose the
solution of the problem already known and represent with letters all the
lines, known and unknown, that seem necessary for the required construction.
Then, making no distinction between known and unknown lines, we must
“unravel” the difficulty by showing in what way the lines are related to
each other, aiming at expressing one and the same quantity in two ways.
This gives an equation. We must find as many equations as there are un-
known lines. If several equations remain, we must combine them until there
remains a single unknown line expressed in terms of known lines. Descartes
then shows how to construct the unknown line by utilizing the fact that it
satisfies the algebraic equation.

Thus, suppose a geometric problem leads to finding an unknown
length x, and after algebraic formulation x is found to satisfy the equation
x2 = ax + b2 where a and b are known lengths. Then we know by algebra
that

2
(1) x=5+ |5 + b

(Descartes ignored the second root, which is negative.) Descartes now gives a
construction for x. He constructs the right triangle NLM (Fig. 15.2) with
LM = b and NL = /2, and prolongs MN to O so that NO = NL = a/2.
Then the solution x is the length OM. The proof that OM is the correct
length is not given by Descartes but it is immediately apparent for

s
0M=0N+MN=§+J%+b2.
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Thus the expression (1) for », which was obtained by solving an algebraic
equation, indicates the proper construction for x.

In the first half of Book I, Descartes solves only classical geometric
construction problems with the aid of algebra. This is an application of
algebra to geometry, but not analytic geometry in our present sense. The
problems thus far are what one might call determinate construction prob-
lems because they lead to a unique length. He considers next indeterminate
construction problems, that is, problems in which there are many possible
lengths that serve as answers. The endpoints of the many lengths fill out a
curve; and here Descartes says, ““It is also required to discover and trace the
curve containing all such points.” This curve is described by the final
indeterminate equation expressing the unknown lengths y in terms of the
arbitrary lengths . Moreover, Descartes stresses that for each x, y satisfies a
determinate equation and so can be constructed. If the equation is of the
first or second degree, y can be constructed by the methods of Book I, using
only lines and circles. For higher-degree equations, he says he will show in
Book III how y can be constructed.

Descartes uses the problem of Pappus (Chap. 5, sec. 7) to illustrate what
happens when a problem leads to one equation in two unknowns. This
problem, which had not been solved in full generality, is as follows: Given
the position of three lines in a plane, find the position of all points (the locus)
from which we can construct lines, one to each of the given lines and making
a known angle with each of these given lines (the angle may be different
from line to line), such that the rectangle contained by two of the constructed
lines has a given ratio to the square on the third constructed line; if there are
four given lines, then the constructed lines, making given angles with the
given lines, must be such that the rectangle contained by two must have
a given ratio to the rectangle contained by the other two; if there are
five given lines, then the five constructed lines, each making a given angle
with one of the given lines, must be such that the product of three of them
has a given ratio to the product of the remaining two. The condition on the
locus when there are more than five given lines is an obvious extension of the
above.

Pappus had declared that when three or four lines are given, the locus
is a conic section. In Book II Descartes treats the Pappus problem for the
case of four lines. The given lines (Fig. 15.3) are 4G, GH, EF, and AD.
Consider a point C and the four lines from C to each of the four given lines
and making a specified angle with each of the four given lines. The angle can
be different from one line to another. Let us denote the four lines by CP, CQ,
CR, and CS. It is required to find the locus of C satisfying the condition
CP-CR = CS-CQ.

Descartes denotes AP by x and PC by y. By simple geometric con-
siderations, he obtains the values of CR, CQ, and CS in terms of known
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quantities. He uses these values to form CP-CR = CS-CQ and obtains a
second degree equation in x and y of the form

(2) y® = Ay + Bay + Cx + Da?

where 4, B, C, and D are simple algebraic expressions in terms of the known
quantities. Now Descartes points out that if we select any value of x we have
a quadratic equation for y that can be solved for y; and then y can be con-
structed by straightedge and compass as he has shown in Book 1. Hence if
one takes an infinite number of values for x; one obtains an infinite number of
values for y and hence an infinite number of points C. The locus of all these
points C is a curve whose equation is (2).

What Descartes has done is to set up one line (4G in the above figure)
as a base line with an origin at the point 4. The x-values are then lengths
along this line, and the y-values are lengths that start at this base line and
make a fixed angle with it. This coordinate system is what we now call an
oblique system. Descartes’s x and y stand for positive numbers only; yet his
equations cover portions of curves in other than what we would call the first
quadrant. He simply assumes that the locus lies primarily in the first quadrant
and makes passing reference to what might happen elsewhere. That thereisa
length for each positive real number is assumed unconsciously.

Having arrived at the idea of the equation of a curve, Descartes now
develops it. It is easily demonstrated, he asserts, that the degree of a curve is
independent of the choice of the reference axis; he advises choosing this axis
so that the resulting equation is as simple as possible. In another great stride,
he considers two different curves, expresses their equations with respect to
the same reference axis, and finds the points of intersection by solving the
equations simultaneously.

Also in Book II, Descartes considers critically the Greek distinctions
among plane, solid, and linear curves. The Greeks had said plane curves
were those constructible by straightedge and compass; the solid curves were
the conic sections; and the linear curves were all the others, such as the
conchoid, spiral, quadratrix, and cissoid. The linear curves were also called
mechanical by the Greeks because some special mechanism was required to
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construct them. But, Descartes says, even the straight line and circle require
some instrument. Nor can the accuracy of the mechanical construction
matter, because in mathematics only the reasoning counts. Possibly, he
continues, the ancients objected to linear curves because they were in-
securely defined. On these grounds, Descartes rejects the idea that only the
. curves constructible with straightedge and compass® are legitimate and even
proposes some new curves generated by mechanical constructions. He con-
cludes with the highly significant statement that geometric curves are those
that can be expressed by a unique algebraic equation (of finite degree) in x
and y. Thus Descartes accepts the conchoid and cissoid. All other curves,
such as the spiral and the quadratrix, he calls mechanical.

Descartes’s insistence that an acceptable curve is one that has an
algebraic equation is the beginning of the elimination of constructibility as a
criterion of existence. Leibniz went farther than Descartes. Using the words
‘““algebraic” and “transcendental” for Descartes’s terms ‘‘ geometrical” and
“mechanical,” he protested the requirement that a curve must have an
algebraic equation.” Actually Descartes and his contemporaries ignored the
requirement and worked just as enthusiastically with the cycloid, the
logarithmic curve, the logarithmic spiral (log p = af), and other non-
algebraic curves.

In broadening the concept of admissible curves, Descartes made a
major step. He not only admitted curves formerly rejected but opened up
the whole field of curves, because, given any algebraic equation in x and y,
one can find its curve and so obtain totally new curves. In Arithmetica
Universalis Newton says (1707), “But the Moderns advancing yet much
further [than the plane, solid and linear loci of the Greeks] have received into
Geometry all Lines that can be expressed by Equations.”

Descartes next considers the classes of geometric curves. Curves of the
first and second degree in ¥ and y are in the first and simplest class. Descartes
says, in this connection, that the equations of the conic sections are of the
second degree, but does not prove this. Curves whose equations are of the
third and fourth degree constitute the second class. Curves whose equations
are of the fifth and sixth degree are of the third class and so on. His reason for
grouping third and fourth, as well as fifth and sixth degree curves, is that he
believed the higher one in each class could be reduced to the lower, as the
solution of quartic equations could be effected by the solution of cubics.
This belief was of course incorrect.

The third book of La Géométrie returns to the theme of Book I. Its
objective is the solution of geometric construction problems, which, when
formulated algebraically, lead to determinate equations of third and higher
degree and which, in accordance with the algebra, call for the conic sections

6. Compare the discussion in Chap. 8, sec. 2.
7. Acta Erud., 1684, pp. 470, 587; 1686, p. 292 = Math. Schriften, 5, 127, 223, 226.
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and higher-degree curves. Thus Descartes considers the construction problem
of finding the two mean proportionals between two given quantities ¢ and gq.
The special case when g = 24 was attempted many times by the classical
Greeks and was important because it is a way to solve the problem of doub-
ling the cube. Descartes proceeds as follows: Let z be one of these mean
proportionals; then z2/a must be the second, for we must have

Then, if we take 2%/a? to be ¢, we have the equation z must satisfy. Hence,
given ¢ and a, we must find z such that

3) 2 = a%,

or, we must solve a cubic equation. Descartes now shows that such quantities
z and z2/a can be obtained by a geometrical construction that utilizes a
parabola and a circle.

As the construction is described by Descartes, seemingly no coordinate
geometry is involved. However, the parabola is not constructible with
straightedge and compass, except point by point, and so one must use the
equation to plot the curve accurately.

Descartes does not obtain z by writing the equations in x and y of circle
and parabola and finding the coordinates of the point of intersection by
solving equations simultaneously. In other words, he is not solving equations
graphically in our sense. Rather he uses purely geometric constructions
(except for supposing that a parabola can be drawn), the knowledge of the
fact that z satisfies an equation, and the geometric properties of the circle
and parabola (which can be more readily seen through their equations).
Descartes does here just what he did in Book I, except that he is now solving
geometric construction problems in which the unknown length satisfies a
third or higher-degree equation instead of a first or second degree equation.
His solution of the purely algebraic aspect of the problem and the subsequent
construction is practically the same one the Arabs gave, except that he was
able to use the equations of the conic sections to deduce facts about the
curves and to draw them.

Descartes not only wished to show how some solid problems could be
solved with the aid of algebra and the conic sections but was interested in
classifying problems so that one would know what they involved and how to
go about solving them. His classification is based on the degree of the
algebraic equation to which one is led when the construction problem is
formulated algebraically. If that degree is one or two, then the construction
can be performed with straight line and circle. If the degree is three or four,
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Figure 15.4

the conic sections must be employed. He does affirm, incidentally, that all
cubic problems can be reduced to trisecting the angle and doubling the cube
and that no cubic problems can be solved without the use of a curve more
complex than the circle. If the degree of the equation is higher than four,
curves more complicated than the conic sections may be required to perform
the construction.

Descartes also emphasized the degree of the equation of a curve as the
measure of its simplicity. One should use the simplest curve, that is, the
lowest degree possible, to solve a construction problem. The emphasis on
the degree of a curve became so strong that a complicated curve such as
the folium of Descartes (Fig. 15.4), whose equation is x> + y® — 3axy = 0,
was considered simpler than y = a*.

What is far more significant than Descartes’s insight into construction
problems and their classification is the importance he assigned to algebra.
This key makes it possible to recognize the typical problems of geometry and
to bring together problems that in geometrical form would not appear to be
related at all. Algebra brings to geometry the most natural principles of
classification and the most natural hierarchy of method. Not only can ques-
tions of solvability and geometrical constructibility be decided elegantly,
quickly, and fully from the parallel algebra, but without it they cannot be
decided at all. Thus, system and structure were transferred from geometry
to algebra.

Part of Book 11 of La Géoméirie as well as La Dioptrique Descartes devoted
to optics, using coordinate geometry as an aid. He was very much concerned
with the design of lenses for the telescope, microscope, and other optical
instruments because he appreciated the importance of these instruments for
astronomy and biology. His Dioptrique takes up the phenomenon of re-
fraction. Kepler and Alhazen before him had noted that the belief that the
angle of refraction is proportional to the angle of incidence, the propor-
tionality constant being dependent on the medium doing the refracting, was
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incorrect for large angles, but they did not discover the true law. Before 1626
Willebrord Snell discovered but did not publish the correct relationship,
sin: vy
sinr 0y
where v, is the velocity of light in the first medium (Fig. 15.5) and v, the
velocity in the medium into which the light passes. Descartes gave this same
law in 1637 in the Dioptrigue. There is some question as to whether he dis-
covered it independently. His argument was wrong, and Fermat im-
mediately attacked both the law and the proof. A controversy arose between
them which lasted ten years. Fermat was not satisfied that the law was
correct, until he derived it from his Principle of Least Time (Chap. 24, sec. 3).

In La Dioptrique, after describing the operation of the eye, Descartes
considers the problem of designing properly focusing lenses for telescopes,
microscopes, and spectacles. It was well known even in antiquity that a
spherical lens will not cause parallel rays or rays diverging from a source N
to focus on one point. Hence the question was open as to what shape would
so focus the incoming rays. Kepler had suggested that some conic section
would serve. Descartes sought to design a lens that would focus the rays
perfectly.

He proceeded to solve the general problem of what surface should
separate two media such that light rays starting from one point in the first
medium would strike the surface, refract into the second medium, and there
converge to one point. He discovered that the curve generating the desired
surface of revolution is an oval, now known as the oval of Descartes. This
curve and its refracting properties are discussed in La Dioptrique, and the
discussion is supplemented in Book II of La Géométrie.

The modern definition is that the curve is the locus of points M satisfying
the condition

FM + nF'M = 2a

where F and F' are fixed points, 2a is any real number larger than FF’, and
n is any real number. If n = 1 the curve becomes an ellipse. In the general
case, the equation of the ovalis of the fourth degree in x and y, and the curve



316 COORDINATE GEOMETRY

N
\_

Figure 15.6

consists of two closed, distinct portions (Fig. 15.6) without common point and
one inside the other. The inner curve is convex like an ellipse and the outer
one can be convex or may have points of inflection, as in the figure.

As we can now see, Descartes’s approach to coordinate geometry differs
profoundly from Fermat’s. Descartes criticized and proposed to break with
the Greek tradition, whereas Fermat believed in continuity with Greek
thought and regarded his work in coordinate geometry only as a reformula-
tion of the work of Apollonius. The real discovery—the power of algebraic
methods—is Descartes’s; and he realized he was supplanting the ancient
methods. Though the idea of equations for curves is clearer with Fermat than
with Descartes, Fermat’s work is primarily a technical achievement that
completes the work of Apollonius and uses Vieta’s idea of letters to represent
classes of numbers. Descartes’s methodology is universally applicable and
potentially applies to the transcendental curves, too.

Despite these significant differences in approach to coordinate geometry
and in goals, Descartes and Fermat became embroiled in controversy as to
priority of discovery. Fermat’s work was not published until 1679; however,
his discovery of the basic ideas of coordinate geometry in 1629 predates
Descartes’s publication of La Géoméirie in 1637. Descartes was by this time
fully aware of many of Fermat’s discoveries, but he denied having learned
his ideas from Fermat. Descartes’s ideas on coordinate geometry, according
to the Dutch mathematician Isaac Beeckman (1588-1637), went back to
1619; and furthermore, there is no question about the originality of many of
his basic ideas in coordinate geometry.

When La Géométrie was published, Fermat criticized it because it omitted
ideas such as maxima and minima, tangents to curves, and the construction
of solid loci, which, he had decided, merited the attention of all geometers.
Descartes in turn said Fermat had done little, in fact no more than could be
easily arrived at without industry or previous knowledge, whereas he himself
had used a full knowledge of the nature of equations, which he had ex-
pounded in the third book of La Géométrie. Descartes referred sarcastically to
Fermat as vostre Conseiller De Maximis et Minimis and said Fermat was indebted
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to him. Roberval, Pascal, and others sided with Fermat, and Mydorge and
Desargues sided with Descartes. Fermat’s friends wrote bitter letters against
Descartes. Later the attitudes of the two men toward each other softened,
and in a work of 1660, Fermat, while calling attention to an error in La
Géométrie, declared that he admired that genius so much that even when he
made mistakes Descartes’s work was worth more than that of others who did
correct things. Descartes had not been so generous.

The emphasis placed by posterity on La Géométrie was not what Descartes
had intended. While the salient idea for the future of mathematics was the
association of equation and curve, for Descartes this idea was just a means to
an end—the solution of geometric construction problems. Fermat’s em-
phasis on the equations of loci is, from the modern standpoint, more to the
point. The geometric construction problems that Descartes stressed in Books
I and III have dwindled in importance, largely because construction is no
longer used, as it was by the Greeks, to establish existence.

One portion of Book III has also found a permanent place in mathe-
matics. Since Descartes solved geometric construction problems by first
formulating them algebraically, solving the algebraic equations, and then
constructing what the solutions called for, he gathered together work of his
own and of others on the theory of equations that might expedite their
solution. Because algebraic equations continued to arise in hundreds of
different contexts having nothing to do with geometrical construction
problems, this theory of equations has become a basic part of clementary
algebra.

5. Seventeenth-Century Extensions of Coordinate Geomelry

The main idea of coordinate geometry—the use of algebraic equations to
represent and study curves—was not eagerly seized upon by mathematicians
for many reasons. Fermat’s book, the Ad Locos, though circulated among
friends, was not published until 1679. Descartes’s emphasis on the solution of
geometric construction problems obscured the main idea of equation and
curve. In fact, many of his contemporaries thought of coordinate geometry
primarily as a tool for solving the construction problems. Even Leibniz spoke
of Descartes’s work as a regression to the ancients. Descartes himself did
realize that he had contributed far more than a new method of solving
construction problems. In the introduction to La Géométrie he says, “More-
over, what I have given in the second book on the nature and properties of
curved lines, and the method of examining them, is, it seems to me, as far
beyond the treatment of ordinary geometry as the rhetoric of Cicero is
beyond the a, b, ¢ of children.” Nevertheless, the uses he made of the equa-
tions of the curves, such as solving the Pappus problem, finding normals
to curves, and obtaining properties of the ovals, were far overshadowed by
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the attention given to the construction problems. Another reason for the
slow spread of analytic geometry was Descartes’s insistence on making his
presentation difficult to follow.

In addition many mathematicians objected to confounding algebra and
geometry, or arithmetic and geometry. This objection had been voiced even
in the sixteenth century, when algebra was on the rise. For example, Tar-
taglia insisted on the distinction between the Greek operations with geo-
metrical objects and operations with numbers. He reproached a translator
of Euclid for using interchangeably multiplicarekand ducere. The first belongs to
numbers, he says, and the second to magnitude. Vieta, too, considered the
sciences of number and of geometric magnitudes as parallel but distinct.
Even Newton, in his Arithmetica Universalis, objected to confounding algebra
and geometry, though he contributed to coordinate geometry and used it in
the calculus. He says,®

Equations are expressions of arithmetical computation and properly have
no place in geometry except insofar as truly geometrical quantities (that
is, lines, surfaces, solids and proportions) are thereby shown equal, some
to others. Multiplications, divisions and computations of that kind have
been recently introduced into geometry, unadvisedly and against the first
principles of this science. . . . Therefore these two sciences ought not to be
confounded, and recent generations by confounding them have lost that
simplicity in which all geometrical elegance consists.

A reasonable interpretation of Newton’s position is that he wanted to keep
algebra out of elementary geometry but did find it useful to treat the conics
and higher-degree curves.

Still another reason for the slowness with which coordinate geometry was
accepted was the objection to the lack of rigor in algebra. We have already
mentioned Barrow’s unwillingness to accept irrational numbers as more than
symbols for continuous geometrical magnitudes (Chap. 13, sec. 2). Arithmetic
and algebra found their logical justification in geometry; hence algebra
could not replace geometry or exist as its equal. The philosopher Thomas
Hobbes (1588-1679), though only a minor figure in mathematics, neverthe-
less spoke for many mathematicians when he objected to the “whole herd of
them who apply their algebra to geometry.” Hobbes said that these alge-
braists mistook the symbols for geometry and characterized John Wallis’s
book on the conics as scurvy and as a “‘scab of symbols.”

Despite the hindrances to appreciation of what Descartes and Fermat
had contributed, a number of men gradually took up and expanded co-
ordinate geometry. The first task was to explain Descartes’s idea. A Latin
translation of La Géométrie by Frans van Schooten (1615-60), first published
in 1649 and republished several times, not only made the book available in

8. Arithmetica Universalis, 1707, p. 282.
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the language all scholars could read but contained a commentary which
expanded Descartes’s compact presentation. In the edition of 1659-61, van
Sch'ooten actually gave the algebraic form of a transformation 0;" co-
ordinates from one base line (x-axis) to another. He was so impressed with
the power of Descartes’s method that he claimed the Greek geometers had
used it to derive their results. Having the algebraic work, the Greeks
according to van Schooten, saw how to obtain the results synthetically——hc;
sho.wed how this could be done—and then published their synthetic methods
which are less perspicuous than the algebraic, to amaze the world. Var;
Schooten may have been misled by the word ““analysis,” which to the Greeks
meant analyzing a problem, and the term ‘““analytic geometry,” which
specifically described Descartes’s use of algebra as a method. ’ ‘

John Wallis, in De Sectionibus Conicis (1655), first derived the equations
of the conics by translating Apollonius’ geometric conditions into algebraic
form (much as we did in Chap. 4, sec. 12) in order to elucidate Apollonius’
results. He then defined the conics as curves corresponding to second degree
equations in x and y and proved that these curves were indeed the conic
sections as known geometrically. He was probably the first to use equations
jco prove properties of the conics. His book helped immensely to spread the
idea of.coordinate geometry and to popularize treatment of the conics as
curves in the plane instead of as sections of a cone, though the latter ap-
proach. persisted. Moreover, Wallis emphasized the validity of the algebraic
reasoning whereas Descartes, at least in his Géoméirie, really rested on the
geiometry, regarding algebra as just a tool. Wallis was also the first to con-
sciously introduce negative abscissas and ordinates. Newton, who did this
later, may have gotten the idea from Wallis. We can contrast van Schooten’s
remark on method with one by Wallis, who said that Archimedes and
nearly all the ancients so hid from posterity their method of discovery and
analysis that the moderns found it easier to invent a new analysis than to seek
out the old.

Newton’s The Method of Fluxions and Infinite Series, written about 1671
but first published in an English translation by John Colson (d. 1760) under
the above title in 1736, contains many uses of coordinate geometry, such as
sketching curves from equations. One of the original ideas it offers is the use
of new coordinate systems. The seventeenth- and even many of the eighteenth-
cent‘ury men generally used one axis, with the y-values drawn at an oblique
or right angle to that axis. Among the new coordinate systems introduced by
Newton is the location of points by reference to a fixed point and a fixed line
through that point. The scheme is essentially our polar coordinate system.
The book contains many variations on the polar coordinate idea. Newton
aI.SO introduced bipolar coordinates. In this scheme a point is located by its
distance from two fixed points (Fig. 15.7). Because this work of Newton did
not become known until 1736, credit for the discovery of polar coordinates
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is usually given to James (Jakob) Bernoulli who published a paper on what
was essentially this scheme in the Acta Eruditorum of 1691.

Many new curves and their equations were introduced. In 1694
Bernoulli introduced the lemniscate,® which played a major role in
eighteenth-century analysis. This curve is a special case of a class of curves
called the Cassinian ovals (general lemniscates) introduced by Jean-
Dominique Cassini (1625-1712), though they did not appear in print until
his son Jacques (1677-1756) published the Eléments d’astronomie in 1749. The
Cassinian ovals (Fig. 15.8) are defined by the condition that the product
77, of the distances of any point on the curve from two fixed points §; and S,
equals b2 where b is a constant. Let the distance §,5; be 2a. Then if b > a we
get the non-self-intersecting oval. If b = a we get the lemniscate introduced
by James Bernoulli. And if b < a we get the two separate ovals. The rec-
tangular coordinate equation of the Cassinian ovals is of the fourth degree.
Descartes himself introduced the logarithmic spiral,’® which in polar co-
ordinates has the equation p = a°, and discovered many of its properties.
Still other curves, among them the catenary and cycloid, will be noted in
other connections.

The beginning of an extension of coordinate geometry to three dimen-
sions was made in the seventeenth century. In Book II of his Géométrie
Descartes remarks that his ideas can easily be made to apply to all those
curves that can be conceived of as generated by the regular movements of a
point in three-dimensional space. To represent such curves algebraically his
plan is to drop perpendiculars from each point of the curve upon two planes

9. Acta Erud., Sept. 1694 = Opera, 2, 608-12.
10. Letter to Mersenne of Sept. 12, 1638 = @Euwres, 2, 360.
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intersecting at right angles (Fig. 15.9). The ends of these perpendiculars will
each describe a curve in the respective plane. These plane curves can then
be treated by the method already given. Farlier in Book II Descartes
observes that one equation in three unknowns for the determination of the
typical point C of a locus represents a plane, a sphere, or a more complex
surface. Clearly he appreciated thas his method could be extended to curves
and surfaces in three-dimensional space, but he did not himself go further
with the extension.

Fermat, in a letter of 1643, gave a brief sketch of his ideas on analytic
geometry of three dimensions. He speaks of cyclindrical surfaces, elliptic

. paraboloids, hyperboloids of two sheets, and ellipsoids. He then says that, to

crown the introduction of plane curves, one should study curves on surfaces.
“This theory is susceptible of being treated by a general method which if I
have leisure I will explain.” In a work of half a page, Novus Secundarum,'* he
says that an equation in three unknowns gives a surface.

La Hire, in his Nouveaux élémens des sections coniques (1679), was a little
more specific about three-dimensional coordinate geometry. To represent a
surface, he first represented a point P in space by the three coordinates
indicated in Figure 15.10 and actually wrote the equation of a surface.
However, the development of three-dimensional coordinate geometry is the
work of the eighteenth century and will be discussed later.

6. The Importance of Coordinate Geometry

In light of the fact that algebra had made considerable progress before
Fermat and Descartes entered the mathematical scene, coordinate geometry

11. Euvres, 1, 186-87; 3, 161-62.
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was not a great technical achievement. For Fermat it was an algebraic
rephrasing of Apollonius. With Descartes it arose as an almost accidental
discovery as he continued the work of Vieta and others in expediting the
solution of determinate construction problems by the introduction of algebra.
But coordinate geometry changed the face of mathematics.

By arguing that a curve is any locus that has an algebraic equation,
Descartes broadened in one swoop the domain of mathematics. When one
considers the variety of curves that have come to be accepted and used in
mathematics and compares this assemblage with what the Greeks had
accepted, one sees how important it was that the Greek barriers be stormed.

Through coordinate geometry Descartes sought to introduce method in
geometry. He achieved far more than he envisioned. It is commonplace today
to recognize not only how readily one can prove, with the aid of the algebra,
any number of facts about curves, but also that the method of approaching
the problems is almost automatic. The methodology is even more powerful.
When letters began to be used by Wallis and Newton to stand for positive and
negative numbers and later even for complex numbers, it became possible
to subsume under one algebraic treatment many cases that pure geometry
would have had to treat separately. For example, in synthetic geometry, to
prove that the altitudes of a triangle meet in a point, intersections inside and
outside the triangle are considered separately. In coordinate geometry they
are considered together.

Coordinate geometry made mathematics a double-edged tool. Geo-
metric concepts could be formulated algebraically and geometric goals
attained through the algebra. Conversely, by interpreting algebraic state-
ments geometrically one could gain an intuitive grasp of their meanings as
well as suggestions for the deduction of new conclusions. These virtues were
cited by Lagrange in his Legons élémentaires sur les mathématiques:*? “As long as
algebra and geometry travelled separate paths their advance was slow and
their applications limited. But when these two sciences joined company,
they drew from each other fresh vitality and thenceforward marched on at
a rapid pace towards perfection.”” Indeed the enormous power mathematics
developed from the seventeenth century on must be attributed, to a very
large extent, to coordinate geometry.

The most significant virtue of coordinate geometry was that it provided
science with just that mathematical facility it had always sorely needed and
which, in the seventeenth century, was being openly demanded—quantitative
tools. The study of the physical world does seem to call primarily for geometry.
Objects are basically geometrical figures, and the paths of moving bodies are
curves. Indeed Descartes himself thought that all of physics could be reduced
to geometry. But, as we have pointed out, the uses of science in geodesy,
navigation, calendar-reckoning, astronomical predictions, projectile motion,
12. Euvres, 7, 183-287, p. 271 in part. ' )
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and even the design of lenses, which Descartes himself undertook, call for
quantitative knowledge. Coordinate geometry made possible the expression
of shapes and paths in algebraic form, from which quantitative knowledge
could be derived.

Thus algebra, which Descartes had thought was just a tool, an extension
of logic rather than part of mathematics proper, became more vital than
geometry. In fact, coordinate geometry paved the way for a complete
reversal of the roles of algebra and geometry. Whereas from Greek times until
about 1600 geometry dominated mathematics and algebra was subordinate,
after 1600 algebra became the basic mathematical subject; in this trans-
position of roles the calculus was to be the decisive factor. The ascendancy of
algebra aggravated the difficulty to which we have already called attention,
namely, that there was no logical foundation for arithmetic and algebra;
but nothing was done about it until the late nineteenth century.

The fact that algebra was built up on an empirical basis has led to
confusion in mathematical terminology. The subject created by Fermat and
Descartes is usually referred to as analytic geometry. The word ““analytic”
is inappropriate ; coordinate geometry or algebraic geometry (which now has
another meaning) would be more suitable. The word “analysis’ had been
used since Plato’s time to mean the process of analyzing by working backward
from what is to be proved until one arrives at something known. In this sense
it was opposed to “synthesis,” which describes the deductive presentation.
About 1590 Vieta rejected the word “algebra’ as having no meaning in the
European language and proposed the term “analysis”” (Chap. 13, sec. 8) ; the
suggestion was not adopted. However, for him and for Descartes, the word
“analysis” was still somewhat appropriate to describe the application of
algebra to geometry because the algebra served to analyze the geometric
construction problem. One assumed the desired geometric length was
known, found an equation that this length satisfied, manipulated the
equation, and then saw how to construct the required length. Thus Jacques
Ozanam (1640-1717) said in his Dictionary (1690) that moderns did
their analysis by algebra. In the famous eighteenth-century Encyclopédie,
d’Alembert used “algebra” and “analysis” as synonyms. Gradually,
“analysis” came to mean the algebraic method, though the new coordinate
geometry, up to about the end of the eighteenth century, was most often
formally described as the application of algebra to geometry. By the end of
the century the term “analytic geometry” became standard and was fre-
quently used in titles of books.

However, as algebra became the dominant subject, mathematicians
came to regard it as having a much greater function than the analysis of a
problem in the Greek sense. In the cighteenth century the view that algebra
as applied to geometry was more than a tool—that algebra itself was a basic
method of introducing and studying curves and surfaces (the supposed view
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of Fermat as opposed to Descartes)—won out, as a result of the work of
Euler, Lagrange, and Monge. Hence the term “analytic geometry” implied
proof as well as the use of the algebraic method. Consequently we now speak
of analytic geometry as opposed to synthetic geometry, and we no longer'
mean that one is a method of invention and the other of proof. Both are
deductive.

In the meantime the calculus and extensions such as infinite series
entered mathematics. Both Newton and Leibniz regarded the calculus as an
extension of algebra; it was the algebra of the infinite, or the algebra that
dealt with an infinite number of terms, as in the case of infinite series. As late
as 1797, Lagrange, in Théorie des fonctions analytiques, said that the calculus
and its developments were only a generalization of elementary algebra.
Since algebra and analysis had been synonyms, the calculus was referred to
as analysis. In a famous calculus text of 1748 Euler used the term “in-
finitesimal analysis”’ to describe the calculus. This term was used until the
late nineteenth century, when the word ““analysis” was adopted to describe
the calculus and those branches of mathematics built on it. Thus we are left
with a confusing situation in which the term “analysis” embraces all the
developments based on limits, but “analytic geometry” involves no limit
processes.
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